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SUMMARY

A method is presented for determining the lateral.-stebility deriva-
tives, transfer-function coefficients, and the modes for lateral motion
from frequency-response data for a rigid eircraft. The method is based
on the application of the vector technique to the equations of lateral
motion, so that the three equations of lateral motion can be separated
into six equations. The method of least squares is then applied to the
data for each of these equations to yleld the coefficients of the equa-
tions of lateral motion from which the lateral-stability derivetives and
lateral-motion transfer~function coefficients are computed. Two numeri-
cal examples are glven to demonstrate the use of the method.

TWTRODUCTION

In the reduction and generalization of flight-test data, whether for
loads, stability, or control purposes, the sirplane stability derivatives
and the coefficients of the transfer functions are often required. A
great deal of emphasis, therefore, has heen placed on the development of
analytical methods for reducing f£light data to obtain these basic deriva-
tives and coefficients.

A number of recent methods, for example references 1 to 4, are now
available for analyzing longitudinal maneuvers and determining the
longitudinal ~-stability derivatives and transfer-function coefficients
from flight data. References 1 and 2 present methods of determining the
longitudinal-stability derivatives and transfer fumctions directly from
transient data. Reference 3 reduces data for longitudinal motion deter-
mined from the forced-oscillation technique by means of circle diagrams
t0 longitudinal -stebility derivatives and frequency response. Mueller,
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in reference 5, was one of the earliest to use vector representation in
the equations of longitudinal motion to represent the derivatives and
integrals of the variables. Schumacher, reference 4, represented the
frequency responses to longitudinal motion gs vectors and substituted
them into the equations of longitudinael motion and the transfer func-
tions. He then applied the method of least squares to these vector
equations, a method which he found very effective in determining certain
of the longitudinal-stability derivatives and transfer-function
coefficients.

The problem of analyzing lateral motions, however, has not received
the same amount of attention as that for longitudinal motion, perhaps
because it is more complicated. Severel analytical investigations have
been underteken and a few methods have been proposed such as the circle-
diagram method (ref. 6), the step-function-response method (ref. 6) in
which the response of an airplane to a step deflection of the rudder or
aileron is analyzed, and the free-oscillation method (ref. 7) in which
the period and damping of the free vibrations of the aircraft due to a
pulse~type input are analyzed. Since the usefulness of these methods
is limited by the number of derivatives which can be extracted, there is
still a need for a more general method of analysis that will extract all
the significant lateral-stability derivatives from flight data.

It is the purpose of this paper to present a method for determining
the lateral-stability derivatives of a rigid airplane and to illustrate
its use by applying it to two examples. The method is based on the
vector representation of the frequency responses to lateral motions.
This vector approach permits separation of each of the equations of
lateral motion into a real and imsginary equation. A least-squares
method is then spplied to the data in each of these equations or combi-
nations thereof to yield the coefficients of the equations of lateral
motion. The lateral-stability derivatives and transfer-function coef-
ficients are then determined from these coefficients and the known alr-
craft mass parameters.

The method is applied to two specific examples, one in which the
frequency responses to a rudder input are known and one in which the
transient responses to aileron deflection are known. In the latter case,
the frequency responses were obtained from the transient motions by two
methods end the stablility derivatives computed.

An attempt has been made to schedule the procedure so as to reduce
the dependence of the results obtained from this method on the deriva-
tives that can be least accurately obtained from the particular data
being analyzed; however, further improvements may be made as further
experience is gained in the application of the method.
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- rolling-moment coefficient,

SYMBOLS

lateral acceleration, ft/sec2

perameters defined by equations (8)
parameters defined by equations (9)

wing span, £t

1ift coefficient, L/qS

yawing-moment coefficient, N/qu
L'/qSb

lateral-force coefficient, ILateral force/qs

coefficient of transfer functions
(defined in table IT)

differential operator, é%

natural logarithmic base

forcing-function coefficients representing rudder
effectiveness (defined in table I)

forcing-function coefficients representing aileron
effectiveness (defined in table I)

acceleration due to gravity, f‘t/sec2

moment of inertia about stability X-axis, ka?,
slug-£t2

moment of inertia about stability Z-axis, me2,
slug-ft2
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product of inertia referred to stability axes (nega-
tive when the positive direction of the X principal
axis is inclined above the flight path, i.e., when
n 1s positive)

stability-derivative coefficients of the equations
of lateral motion (defined in table I)

radius of gyration about staebility X-axis, ft
radius of gyretion about stability Z-axis, ft
nondimensional radius of gyration about longitudinal

stability exis, \[(kxo/b) 2 cos?n "'(kZO/b) 2 ginq

nondimensional radius of gyration about vertical

stability axis, Jé&zo/b) 2 cos2y + (kxo/b) 2 gin2y

nondimensional product-of-inertia parameter,

- [;(kzo/b)a - (k.xo/lag‘]cos n sin 7

radius of gyration ebout principal longitudinal
axis, ft

radius of gyration about principal vertical
axis, It

1ift, 1b
rolling moment, f£t-1b
Mach number

aircraft mass, W/g, slugs
yawing moment, £t-1b

incremental rolling angular velocity about
X-axis, radians/sec
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dynsmic pressure, %pve, 1b/sq £t

inclination of principal longitudinal axis of inertia
with respect to flight path (positive when the posi-
tive direction of the X principal axis is inclined

q

r or ﬁ incremental yawing anguler velocity about
Z-axis, radians/sec

R amplitude ratio

S wing area, sq £t

s Laplace transform variable

t time, sec

v incremental component of velocity V along
the Y-axis, ft/sec

v true airspeed, ft/sec

W aircraft weight, 1b

X, ¥, 2 airplane stability axes (see fig. 1)

a angle of attack, radians

B engle of sideslip, v/V, radians

B, aileron control deflection, radians

5p rudder control deflection, radians

n
above the flight path)

Hp nondimensional mass parsmeter used for lateral
equations, m/pr

o] alr density, slugs/cu ft

T time parsmeter, m/pSV, sec

o phase angle, radians

¢ angle of roll, radians

¥ angle of yaw, radians

w angular frequency, radians/sec
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Bar notation:
g bar over letter represents maximum value
|a| bars on sides of symbol represent absolute value

Matrix notation:

[: :l square matrix
{ } columm matrix
The lsteral-stability derivatives are expressed by subscript nota-
oc & aC
tion as, for example: C; =—%, Cp =—2, and C, = —Z2.
B OB "p b fr b
2V 2V
Phase angles are also indicated by subscript notation as @ is

Bor
the phase angle between the input rudder deflection and the output side-
slip angle.

DEVELOPMENT OF METHOD

Equations of ILateral Motion

The equations of lateral motion based on the stability axes (as shown
in fig. 1) and on the usual assumptions of linesrity, small angles, and
maneuvers which start from a level-flight condition are usually written
in the following form:

(2) For the sideslipping motion,

(D + K1)B - Koff + DY = Fy5.(%) (1)
or, since ay, = V(DB + DY - K2¢),
oy + KB = F15:(%) (1a)

(b) For the rolling motion,

K,p +(D2 + KhD)¢ -(1(5132 + K6D)qr = F8.(t) + Gp8,(t) (2)
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(¢) For the yawing motion,
KB - (1(8]32 + K9D>¢ + (132 + KlOD)Ilf = F,5 (%) + G5, () (3)

where the K, ¥, and G coefficients are defined in table I. The
forcing functions of these equations are written for rudder inputs and
aileron inputs combined; for the sake of simplicity in developing and
demonstrating the method, only rudder imputs Fy8.(t), Fyd,(t),

and F35r(t) are considered. The method, however, applies equally well
to both aileron and rudder inputs as is shown subsequently.

Vector Interpretation of Frequency Response

In many current studies of alrplane dynamics, the frequency response
of the aircraft is determined from flight data. Having the data avail-
able in the frequency plene offers certain advantages over having the
dgta in the time plane, since use can then be made of the vector inter-
pretation of frequency response. The development which follows will
assume that the data to be analyzed are avallgble in frequency-response
form. In the event that only transient-response data are available, the
transformation to the frequency plane can be made from s selection of one
of the several methods compared in reference 8.

The vector technique is gpplied to the determination of lateral-
stability derivatives in the following manner. If an input &, to a
linear system (a system described by a linear differential equation) is
considered to have a ginusoidal variation of frequency w, it can be con-
sldered to be a vector of unit magnitude lying along the real axis of the
complex plane as shown in figure 2(a). The first derivative of the sinus-
oidal input D&y is then obtained by multiplying the amplitude by o and
rotating the resulting vector 90° counterclockwise in the complex plane
vhich is equivalent to advancing the phase angle by 90°. Each succeeding
higher derivative is found by multiplying by o and rotating the vector
90° in the complex plane; thus,

5r = 1 ()
D&, = iw (5)
D28y, = —of (6)
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The steady-state oubtput or response of the linear system to a sinus-
oidal input may be considered to be a vector of msgnitude equal to an
amplitude ratio R and having a direction angularly displaced from the

real axis by a phase angle @.
for sideslip may be represented as

i
O

By definition,

_|E
ke
=¥
M5
5 =| B
15,
=¥
S

ie =
. Bt‘>r=|B

Or

Thus, in the complex plane, the vector

(cos (I)BBI. + 1 sin (DBax) = Ag + iBg (7

The derivatives of B are represented as

cos <I>B A¢ = -gir cos <I>¢
(8)
cos ibll,ar Aay = grz cos ¢>&y6r
sin ¢ By = —_?— sin o
s, s, Ps..
) (9)
sin qaqf B&y El% sin <I>a,yar
i +1)
Y B
=0 -_E- e ( Sr 2
Op
= —B— -~5i i (D
[é)) _a.r ( S1in Q)Bar + CcOs BBI)

—anB+i<1>fX13
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and
DB = o _i ei(¢66r+ﬂ>
O
=aa2-§£r-<-cos o -isinthSr)

= —(naAﬁ - i(nBBB (11)

Similarly, for roll (see fig. 2(b)), the equations corresponding to equa-
tions (7), (10), and (11) would be

¢ = ag + 1By (12)
i D = —aBg + loAg (13)
?g = @2% - 1aFBy g (14)
for yaw,
¥ = 'A'tl)‘ + iB\l’( (15)
Df = ~uBy + lody (16)
- D% = ~oPA, - 1dPB, (17)

and, for lateral acceleration,

Substituting equations (%) to (18) into equations (1), (la), (2), and (3)
and equating the real and imsginary values in each equation ylelds the
following eight simplified equations:
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From equation (1):

KyBg - KgBy = -oo(ag + Ay (19)
and
KlAB—K2A¢=Fl+<D(BB+B¢) (20)
From equation (la):
VK;Bg = -Bg (21)
VK Ag = VFp - Aa_y (22)
From equation (2):
KzBg + Kyohg + KsoPBy - Kgohy = By (23)
end
Kyhg - KBy + Kscna.% + KguB, - Fp = w2A¢ (2k)
From equation (3):
KBy + KgafBy - Kguhg + Kyoohy = ofBy (25)
and
Ky + KguFhg + Kouly - Kyoaly - F5 = oy (26)
In equations (19) to (26) the AB,¢’,¥,ay and BB,¢’¢’a_y terms will

be available gt the particular velues of @ <from the frequency-response
curves. It will be agssumed that the Ky term is determined from the

velocity measurement and the K5 and Kg terms, which are equal to the
ratios IXZ/IX and IXZ/IZ’ respectively, are known from either weight

and balance calculations or measurements so that only the values
of Ki,3,h,6,7,9,10 and Fl,2,3 are to be determined from the data.

It should be noted that even though K5 and Kg are assumed to be known

a-need still exists for a simple method of determining alrcraft moments
of inertie and the location of the principal longitudinal axis)



NACA TN 3083 ‘ ‘ 11

Equations (19) to (26) are now used to compute the K and F coef-
ficients. The advantage of separating each of the equations of lateral
motion into real and imaginary equations now becomes apparent. The two
derivatives most difflcult to determine are Czr and Cnp contained in

the Kg and K9 coefficients, respectively. The Kg coefficient may
be eliminated between equations (23) and (24); similarly the K9 coef-

ficient may be eliminated between equations (25) and (26). The equations
thus obtained, when used to compute the unknown coefficients, result in
better conditioned matrices and more accurate results. In the usual case
it has been found unnecessary to perform the elimination of the

K9 coefficient.

As a first step in solving for the K and F coefficients, equa-
tions (19) to (26) are fitted to the frequency-response data over a range
of velues of w by the method of least squares. The theory of least
squares 1s well-known and is derived in many textbooks (e.g., ref. 9) and
no attempt is made here to repeat its derivation.

The application of the least-squares method to equations (19) to (26)
converts these equations to their computationsl form. It is recommended
that, if the lateral-acceleration frequency response is available, equa-
tions (21) and (22) be used in preference to equations (19) and (20) for
the computation of K; and F.

Equation (19) may be expressed simply as

Kp = anl (27)

and yields K;. Similarly, equation (20) can be expressed as

Ff%géclﬁa‘%‘@s‘“ﬁ% (28)

and yields Fy.
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For the same variasbles K; and F;, the least-squares forms of

equations (21) and (22) for use with the lateral-acceleration frequency
response are:

Ky = (29)
S, 9
S f\(xcl% : ?)j (50)

A

&
vV—
n
A

S I % LD S )

J=mp J=my

J_'ml -

o0, T, P |l B o) e

—(31)
and ylelds K#, Ké, and Kip-

Equation (26) can be expressed as

ek D ity Tty Koy - - ) o)
and yields F3.

In order to evaluate the remaining constants, K5, Ky, Kg, and F2,
the coefficient Kg is first eliminated between equations (23) and (24).
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This step is teken in order to obitain a more accurate value of the coef-
ficient Kg, which is less significant under these conditions, and to

provide s better conditioned matrix of coefficients in the computation
of KB, Ky, end F,o. Upon elimination of the Kg term between equa-

tions (23) and (24), the following relation is obtained:

(o5 + Agh) + Kun (B - ) - Ty = oF(agey + ) - K|
(33)

Upon the application of the method of least squares, equation (33)
becaomes

-
}f_;KBanwwjz %(%-%)J(%+wd %éﬁv)d(ﬁawwd 5

F
n

S e ), B, T BT B O, ),

j%@v)d@ﬁ+wd %(-M)J(m - g %[(w);,]z ke
- i
%@aﬂwﬁﬂ -w]&?d(ﬂwwd
<%@2‘B¢B«/ » cFaghy - Ksm‘*|£ﬁd(w¢3« - gy o)
%é’aﬁﬁ » g, - %mz(ér)d ),
which yields KB, K), and Fo.
The coefficient may now be obtained frcﬁ equation (24) which,

after the method of least squares has been applied, may be expressed as:

S (ep g - sty + Ry - <hg) , (E89)

= Ok

Ke

(35)
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An alternate expression for Kg may be obtained from equation (23)
which may be expressed as

‘f KzBg + Kyafg + KsoFBy - 032B¢> (@2y)
P 3649, e

> B

e

Velues of Kg, which define the derivative C'Lr , are lmportant in

the spiral mode. In order to obtain accurate values of Kg, aircraft

motions which bring out the full effect of the long-period spiral mode
should be analyzed to obtain accurate frequency-response data near w = O.

In the case where the solution for Cn13 is found to involve ill-

conditioned matrices, should be eliminated between the real and
imaginary equations (25) and (26).

With all the K and F coefficients of the equations of motion
determined, the lateral-stability derivatives can be computed from the
K and F coefficients and the known aerodynamic parameters by use of
the definitions of table I. The transfer-function coefficients can be
calculated from the definitions in table IT and the transfer functions
and modes of lateral motion can be obtained from the equations in
appendix A.

SUGGESTED PROCEDURE

In order to aid in the application of this method to the analysis
of flight data, a suggested step-by-step procedure which is presented in
this section has been worked out. An effort has been made to schedule
the procedure so as to reduce the dependence of the results on the deriva-
+ives that can be least accurately obtained from the particular data being
analyzed. Alternate steps are suggested where it was found that some par-
ticular derivative might be more accurately determined by one or the other
of two approaches under certain conditions. No weighting of specific
groups of data is employed in the least-squares procedure; weighting can,
however, be employed when it is considered desirable to put more dependence
on data regarded as more reliable.
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As a further demonstration of the method, two numerical exemples
have been carried out according to this procedure. In one example, pre-
sented in appendix B, the lateral-stability derivatives are calculated for
an airplane whose transient responses to alleron deflectlon are assumed
to be known. This example was chosen in order to gain some insight into
the dependence of the method on the. accuracy with which the frequency
response can be obtained from the transient response.

The other exesmple is for the hypothetical rigld airplane whose mass
and geametric parameters are listed in table ITI. The assumed frequency-
response data of sideslip angle B, roll angle @, yaw angle V¥, and
leteral acceleration ay for a rudder-deflection input such as might be
obtained from analysis of flight data are listed in table IV and plotted
in figures 3 to 6. The analysis of these data has been used to illustrate
the following suggested procedure.

(1) Tabulate parsmeters and working equations.- Tabulate the air-
plane parameters and any stability derivetives that are known or can be
computed directly from those that are known as illustrated in table IIT.
Tabulate the least-squares equatioms (27) to (32) and (34) to (36) with
any known terms on the right-hand side as has been done in equations (27a)
to (322) and (34a) to (36a) in table V for the example. (Since Cn, was

taken to be zero in the example, all terms containing K9 - were dropped;
however, in the example of sppendix B, Cnp was Included and the
Kg term was determined)

(2) Tabulate frequency-response data.- Tabulate the amplitudes and
phase angles of the four lateral variables at the values of ® 4o be
used in the analysis. TFor simplicity in the example, as shown in table IV,
10 integral values of w, evenly distributed over the range of the data,
were chosen; however, in cases where more accurate points occur at non-,
integrel values of w, 1t is advisable to use such points, where possible.
The range of values of @ should be restricted to the rigid response,

14

—
—

O

but the point w = O should be avoided because is infinite.

a=0

(3) Compute vector components of data.- Compute the vector campo-
nents from the data listed in step 2 and tabulate them as shown in
table IV, It is advisable to use at least 5-place tables of sine and
cosine values in this computation. Additionsl columns of aﬂB, wBB,

aﬂ¢, .« . and a?AB, a?BB, a?A¢, . « «» will be useful in subsegquent
operations but are not listed for the example.
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(4) Compute K;.- Campute K; from equation (27a). (See

table VI(a).) In this step and in subsequent steps, summation of the
corresponding elements of the indicated products of the data colums
evaluates the matrices of coefficients and knowns. The resulting simul-
taneous equations are readily solved by any standard method.

(ka) Alternate step b.- Compute Ky from equation (29a). (See
table VI(c).)

(5) Coampute Fy.- Campute Fy from equation (28a) with the values
of K3 from step (4). (See table VI(b).)

(5a) Alternate step 5.- Campute F; from equation (30a) with the
values of K; fram step (4a). (See table VI(Q).)

(6) Campute K7 and Kjg.- Compute K; and K)o from equation (31a).

(See table VI(e).)

(7) Compute Fz.- Compute F5 from equation (32a) with the values

of K7 and Kjq from step (6). (See table VI(f).)

(8) Compute K3, Ky, and Fp.- Compute Kz, Kj, and F, from

equation (34a). Because of the combination of two equations to obtain
equation (34) in the method, the combination of data columns is more
complicated in this step than in others. (See table VI(g).)

(9) Compute Kg.- Compute Kg by one of the following methods:

(a) If F, has not been eliminated, calculate Kg from equa-
tion (35a) with the values of Kz, Ky, and Fp from step (8). (See
table VI(h).)

(b) If F, has been eliminated calculate Kg from equation (362).
(See table VI(i).)

(10) Compute stability derivatives.- Compute the lateral-stability
derivatives from the relationships in table I and the now complete set of
values of K and F. (The computed and known values of the K
and F coefficlents and the stability derivatives for the exemple are
given in tables VII and VIII, respectively.)
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(11) Campute transfer-function coefficients.- Compute the transfer-
function coefficients from the relationships given in table IT and the
values of K and F. (The computed and known values of the transfer-
function coefficients for the example are given in table IX.)

(12) Compute the modes.- The modes of lateral mobtion msy now be
computed, if desired, by use of the equations in appendix A. (The values
of the lateral modes for the example are given in table X.)

(13) Accuracy check.- When the true derivatives are unkmown, the
check on the computations is obtained in the following menner: Calculate
the frequency response fram the equations in appendix A and the computed
coeff%cients of step (11). Compare these values with the data of
step (2).

DISCUSSION

Data requirements.- The method of this paper is based on the assump-
tion that equations (1), (2), and (3) represent the lateral motions of the
alrplane. These linear differential equations are satisfied by small
variations in roll, ysw, and sideslip but will not necessarily hold for
large changes in these variables or in regions of flight where nonlineari-:
ties occur. It is therefore desirable to obtain data for transformstion -
to the frequency plane from smell motions recorded within ranges of Mach
number and other variables in which the coefficlents are constant; also, -
the range of frequency-response date to be used must be limited to values
for which the aircraft acts as a rigid body and higher frequency instru-
ment Inaccuracies are avoided. Thus, the assumptions of the method will
be most negrly in accord with the true physical nature of the problem.

In any case, experience has shown that the derivatives obtained by this
method of analysis will accurately reproduce the frequency response frem
which they were extracted.

Since the present method requires flight data in frequency-response
form, either the forced-oscillation technique or the technique of oscil-
lating the rudder or ailleron at various frequencies and measuring the
steady-state response in B, D, D, and ay must be employed or the

trensformation of a transient response from the time plane to the fre-
quency plane must be made by an appropriate method. A comprehensive sur-
vey of methods for effecting this transformation from time to frequency
plane is glven in reference 8 which evaluates the Fourier integral method
as well as the use of devices such as the Fourier synthesizer, Coradi
hermonic analyzer, and IBM machines for obtaining frequency response from
transient-response data.
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If, as is usually the case, the transient responses in roll and yaw
are measured in the form of time histories of DJ and Dy rather than
of ¢ and V¥, it is recommended that these time histories of
and DYy Dbe converted to frequency response initially and then the fre-
quency responses of ¢ and V¥ be computed from the frequency responses
of D and Dy by use of the relations

SR
S B (e

& <f%

and
¢ =&; + 90° o =0, + 90°
Do, ~ Ps, Dig, Vo,

Flight data are usually measured about the body axes; before they
can be used, however, either they must be converted to a form corre-
sponding to the stablility axes or the development must be restated in
terms of body axes. The following equations are presented to be used
in trensforming to the stabllity axes:

¢

V= ¥y, cos o - ¢b 8in o

¢b cos a + ﬁb sin o

it

vhere o 1is the angle of attack (angle between the body X-exis and the
stability X-axis) and the subscript b refers to the body axes. In
addition, the sideslip-vane measurements can be converted to the corre-
sponding values at the center of gravity by means of the formuls

1g¥
B =By - = Ccos

where the subscript v refers to the vene and IB is the distance fram
the center of gravity to the sideslip vane measured along the body X-axis.

If the lateral acceleration ay as recorded by an accelerometer is

used, it must be corrected for any components of angular velocity and
acceleration present in such records because of the displacement of the
accelerometer from the alrplane center of gravity.
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Sensitivity of the method and possible simplificetions.- Even though
the foregoing general rules are observed, the question arises as to how
the derivatives obtained compare with the actual derivetives of the air-
plane, and how sensitive these derivetives are to inaccuracies in the
frequency-response data. These inaccuracies stem from several sources
such as measurement of the transient motions, transformation from time to-
frequency plane, and reading errors. Care should be exercised to keep )
these inaccuracies to a minimum.

\

No ettempt is made to present a comprehensive error analysis in this
paper, but several general remarks appear to be in order. A comparison
of the values gilven in tables VII, VIII, and IX for the coefficients of
the equations of lateral motion, the lateral-stability derivatives, and
the transfer-function coefficients indicates essentially no errors due
to the method itself. It has been found, however, that the derlived values
of CYB and CYBr are sensitive to slight variations in the quanti-

ties Ay, Bg, Ay, and By (see egs. (27) and (28)). This sensitivity

is due to the fact that the alrplane angle of yaw is very nearly equal
to the negative of the sideslip angle and hence accurate determination
of the lateral acceleration from measurements of w and B is diffi-
cult. This difficulty can be obviated by a direct measurement of the
lateral acceleration with an accelerometer and more accurate values
determined for CYB and Cy, by means of equations (29) and (30).

As brought out in appendix B, the accuracy with which the values of
the derivatives Cjp,., Cp,, and CYB can be determined from frequency-

response date appears to be dependent upon the inclusion of data for fre-
quencies near the natursl frequency of the sairplane. This fact is brought
out further by same unpublished results that indicate that derivatives

such as Cnr and CYB are very sensitive to variations of the frequency

regponses near the alrplane natural frequency. In the case of Cnr the

conclusion is obvious since this derivative is known to contribute largely
to the airplane Dutch roll demping and it is also known that the peak value

, 1s highly dependent

upon the airplane Dutch roll damping. It appears therefore that an
accurate representation of the frequency responses at frequencies near
the airplane natural frequency (for instence 150 percent) is probably
very important in the determination of the lateral-stability derivatives.

of the frequency-response amplitude ratio, say '%

In general, when the number of unknown derivatives can be reduced,
the remaining derivatives can be determined with greater reliability.
For this reason, several possible simplifications are presented for the

calculation of the derivgtives C_ , Ch. > CZ , and CZ . The airplene
s By P B,
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natural frequency is, for small values of the product of inertia, well
approximated by the expression

o ~ Onp 2=
PI

If the natural frequency wy 1s epparent from the available transients
and the inertia parameter is known, a very good value of CnB can gen-
erally be obtained from this expression.

Extrapolation of the amplitude ratio |§%‘ 1o zero frequency may
afford a means of obtaining the derivative Cnﬁr subsequent to deter-
mination of CnB from the preceding frequency relation. The value of

lg%’ at o =0 obtained by this extrapolation is not indicative of the
actual static sensitivity, but rather of the apparent static sensitivity
which includes the very lightly damped spiral mode. Tgis apparent steady-

state response is approximately equal to the ratio - 6_92, from which

ng

Cn can be estimated if Cnﬂ is known.

O

The transfer function which relates the rolling velocity to aileron
deflection is well approximated (particularly at low frequencies) by the
expression

i tep-l @
i(im) % G2 SR
~ K)_,_ + i(D 1/2
(&2 + o)

Therefore, ®¢8a(w) = —tan~t é?- from which K), and subsequently CIP’

Bg,
and henee CZS can be obtained once Kh hasg
a,

2
8]Z'

at o = 0, which is actually zero, but gives

can be determined. Also, by extrapolating the amplitude ratio to

o = 0, the parameter G,

been determined. As was the case for

¢

8
the gpparent value due to the lightly damped spiral mode.

, This extrapolation does not

yield the true value of
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CONCLUDING REMARKS

A method has been presented for extracting lateral-stability deriva-
tives from frequency-responge dats which have been derived from aircraft
transient responses to arbitrary control inputs. In order to demonstrate
the use of the method, the lateral-stebility derivatives have been calcu-
lated for two hypothetical airplanes for which the frequency-response data
or transient-response flight data were assumed to be known. Simplifica-
tions were proposed for obtaining certain of the derivatives, and although
no error analysls is presented in this paper, scme general observations

can be made concerning the sensitivity of the method to inaccuracies in
the original data.

In view of the limited experience in the determingtion of lateral-
stability derivetives from flight data, and particularly in using the
present method, it appears that an Investigation should be made to deter-
mine the effects of some of the errors inherent in analyses of transient
responses, such as recording accuracy, reading accuracy, and so forth,
on the derived frequency regponses and hence on the computed lateral-
stability derivatives. It is noted here that, although the methods pre-
sented in this paper for the extraction of lateral-stebility derivatives
from frequency-response data are theoretically correct and mathematically
sound, the accuracy with which the lateral-stability derivatives of an
airplane can be determined by this method is directly dependent upon the
accuracy with which the frequency responses of the ailrplane are known.
Also, some consideration should be given to the types of inputs likely
to afford good frequency-response data and to testing procedures whereby
some of the stability derivatives that are most difficult to determine
may be gccurately obtained. In addition, accurate frequency-responsge
data for specific ranges of frequency may yield more accurately certain
of the stability derivatives and this possibility should be investigated.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Lengley Field, Va., February 16, 195k.
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APPENDIX A

DEVELOPMENT OF EQUATIONS FOR TRANSFER FUNCTIONS, MOIES,
AND FREQUENCY RESPONSE FOR LATERAT, MOTION
In this appendix the transfer functions are derived from the equa-

tions of lateral motion and the modes and frequency response are expressed
in terms of the transfer-function coefficients.

Equations of Motion

The motions of a rigid alrcraft resulting from a rudder-deflection
input are assumed to be expressed by the following three standard line-
arized equations of lateral motion:

(D + K1) B - KB + DY = F18,.(%) (A1)
Ksp +{? + KD 8 —(K5D2 + KgD)¥ = Fp0,.(t) (A2)
KB _(K8D2 + K9D)¢ + (D2 + KlOD)qr = Fz5,.(t) (A3)

where the K and F coefficlents are defined in table I. The axes and
the sign conventions employed are shown in figure 1. On spplying the -
Laplace transformation

F(s) =f;° £(t)e~5tat (Al)

(where s = o + iw) to both sides of equations (A1), (A2), and (A3) and
assuming the initial conditions to be zero, there 1s obtained
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s + K1 Kp s 1 [8e)  (mp.(e)]  (a5)
K3 s2 + K8 -K5s2 - K8 ﬁ525(:s)> =3F28r(s)L (A6)
K7 -Kgs® - Kgs 82 + Ky08 | t;r(s)J LF3'z3r(s) (A7)

Transfer Functions

By solving the three simultaneous equations (A5), (A6), and (AT)
for PB(s) there is obtained

(00'85 + Cl'slL + 02'83 + C5'82 + Ch's) B(s) =

(Cs'sh' + C6'Es3 + C7's2 + 08'5) 5r(s) ‘ (A8)

where the Cp' coefficients are defined in table IT. Dividing equa-
tion (A8) through by Co' and using the unprimed coefficients C, to

1

C 4

designate the ratio of the primed coefficient to Cp' G.g. s C1 = 5#
c

and Cp = Eg-;\) results in the following transfer function for B due to

0

a rudder-deflection input B8.:

N C5s5 + Cgs2 + Cos + Cg
==

(29)
:slL + Cls3 + 0232 + C3s + Cu

Determined in a similer manner, the transfer fumction for ¢ is

Co82 + Cyp8 + C
S g% 4 0183 + Cps2 + Cz8 + Cy
and the transfer function for V¥ is
Cyp82 + CGyz82 + Cq18 + C
¥ ___1e 13 1L 15 (a11)

Or s(slL + C]_s3 + 0292 + CBS + Ch,)
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The lateral-acceleration transfer function may be developed from the
sideslip transfer function in the following memmer: The lateral accelera-
tion is usually defined as

ay = V(DB + D¥ - Kf) (A12)

Substituting equation (Al) into (Al2) yields

ay = VF5,.(t) - VKB (a13)
Therefore,
5 T a(s) L
or
ay _ C]_6slL + C]_-Zs3 + C1882 + C1g8 + Cpp (415)
Sr slL + Cls3 + 02s2 + C3s + Cl;
Modes

The characteristic equation of lateral motion is obtained by
expanding the determinant of the coefficients of equations (Al), (A2),
and (A3) and is

L
s(s + Cls3 + 02

82 + Css + Ch)= 0 (A16)

This equation can be factored as follows:

s(s + 7\])(3 + 7\2)(5 +E - in)(s + €+ 111): 0 (A17)

where the root s = O dindicates that the aircraft is insensitive to
azimuth, the root A, is the demping-in-roll mode, the root A, is
the spiral mode, and the root -¢ t in 1is the Dutch roll mode, an
oscillgtory motion composed of roll, yaw, and. sideslip. The modes of
this airplane are indicated in table X.
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An approximate expression for )2 which gives excellent results is

C 1
M = b= (a18)

Frequency Response

The frequency response which is the steady-state response to a
sinusoidal input consists of an amplitude-ratio and phase-angle relation
between input and response for various values of . It is determined
by substituting s = iw into equations (49), (A10), (A1l), and (Al5),
respectively, for B8, ¢, ¥, and ay and is a complex expression. The

amplitude retio is the square root of the sum of the squares of the real
and imaginary parts of the complex expression and the phase angle ¢ is
the arc tangent of the ratio of the imaginary part to the real part.

The emplitude ratio for sideslip angle B is

(08 - C6a)2>2 +<C7a) - 05&3)2

__§_l= . (A19)
’81‘ ((D)"' - 020.)2 + C)_|_>2 + @3(.0 - C]_(D5>2
and the phase-angle relation between B and &, 1is
Cowy - Ce? Czw - Cyad
0g, = tanl[Z27 ) o T3% 701 (20)
or Cg - CgaP o - Cpaf + O
The emplitude ratio for roll ¢ is
Ii‘= <Cll - C9a)2>2 +(C100)2 (a21)
Sp (a}* - Couf + c4)2 +<03(b - Clw5)2
and the phase-angle relation between ¢ and 5. 1s
O, = tan-L (G100 ) o[ Cso - Cro (A22)

Cpp - Cqof o - 0 0P + 0y
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The amplitude ratio for yaw V¢ is

015 - 013032) + _\(,3]_40) - 032&)2
lsrl Cla) - 03w2)2 +(a)5 ~ Cpo” + 04(.1))2

and the phase-angle relation between V¥ and 5, 1is

(I"lfﬁr = ‘tan"l Cllka) - Cl2035>_ 'ta.n—l'éﬁ - 02('“3 + C)-l-aj

15 - 013032 \ cla}‘ - 030)2

The amplitude ratio for lateral acceleration ay is

’ ?_y_‘= (016‘“4 - Cyge? + Cao) (Clga) - Cl7w5)
or \ ( -Cas2+Ch_) (50)—01(.03)

and the phase-angle relation between 8y and &, 1is

(423)

(a2k)

(A25)

N

_ tan-l/ Cigo - C170? >_ san-L ( Cxw - Cy0”
0)

oy % n

- Couf + C

> (A26)
4
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APPENDIX B

DETERMINATION OF LATERAIL-STABILITY DERIVATIVES BY USE OF
FREQUENCY RESPONSES DERIVED FROM CATCULATED TRANSIENT
RESPONSES TO ATLERON DEFLECTION

Transient responses in roll, yaw, and sideslip to a square-pulse
aileron deflection were calculsgted for the airplane whose mass and aero-
dynamic characteristics are given in table XI. These transients and
assumed gileron time histories are presented in figure 7.

The frequency responses D¢/8a, Dw/aa, and B/Ba were obtained

from analysis of the calculated tramnsient responses D¢, Dy, and B to
the assumed aileron deflection by use of the equation

o
f e~8tr(t)dt
0

f e~5%q(4)at
0

= G(s)

The Laplace transforms of the responses were obtained by fitting various
functions, such as polynomials or trigonometric functions, to finite
sections of the respective output curves and thus performing analytically
the required integrations from O to e« in finite time intervals as
described in reference 8. These transforms were then evaluated for a
number of values of iw (where s = iw) and frequency-response data
were obtained. These data have been plotted in figure 8 where they are
represented by the trianguler test points.

For purposes of comparison, the frequency responses for the alrplane
were calculated from the basic mass and aerodynamic characteristics and
are also presented in figure 8 in the form of curves. The agreement
between these two sets of data is seen to be excellent.

In addition, the frequency responses were obtained from the calcu-
lated transients by use of IBM equipment. The Fourier transform of each
transient was obtained from a numerical evaluation, by means of the
IBM equipment, of the integral

ﬁ‘imF(t)dt
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between the limits of t+ =0 and © = 6.9 seconds to which was added
an end correction based on an analybtical expression of the transients
from t = 6.9 seconds to infinity. A time interval At = 0.05 second
was used in the numerical integrations. The frequency responses thus
obtained are shown in figure 8 as square points and appear to be in
excellent agreement with the frequency responses calculated from the
basic mass and aerodynamic characteristics and with those derived from
the transients by the curve-fitting method.

By use of equations (27), (31), (33), (35), and (36) of the body of
the paper and the frequency-response data derived from the transients by
both methods, the coefficients Kj, Kz, Ky, Kg, Go, K7, Kg, and Kjq

were obtained, and hence the stability derivatives CYB’ CIB: C}P’ Czr,
CZSa’ CnB’ Cnp, and Cnr' These results are presented in table XII

along with the values assumed for the calculation of the transient motions.
Results are also presented for the case where equations (1), (2), and (3)
of the body of the paper were not separated into real and imaginary parts
but were treated as vector equations and the method of least squares
applied in e manner similar to that described in reference 4. The amount
of work required in the least-squaring process is less when these equa-
tions are treated as vector equations, but a limitation is introduced in
that a parameter such as K6 which is difficult to extract with good

accuracy cannot be eliminated as it was in the body of the paper when the
equations were separated.

A comparison of the values of the derivetives based on frequency
responses obtained by the curve-fitting method and obtained from the two
methods of treating the equations of motion indicates very good agreement
for all the parameters except Clr' The poor agreement for Clr is felt

not to be significant since Czr generally makes a negligible contribu-

tion to the lateral motions of an airplane and is important only in the
lightly damped spiral mode of motion which is very difficult to define
accurately from a transient response.

A similer camparison of the two sets of values based on frequency
responses obtained with the IBM equipment shows good agreement except for
the derivatives Czr, Cnr’ and CYB. The poor agreement between the

initially assumed values of C, , Cnr’ and CYB and those calculated
T

from the frequency responses obtained with the IBM equipment is probably
due partly to the fact that data were not obtained for frequencies near
the natural frequency of the alrplane with the particular routine used
for the IBM equipment and partly to small inaccuracies that exist in the
data at the frequencies that were included. These small inaccuracies
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undoubtedly could have been reduced samewhat by the use of a smaller time
interval in the numerical integrations performed by the IBM equipment.

The use of the frequency-response date which were obtained from the
transient responses by the curve-fitting method and which included fre-
quencies near the natural frequency of the airplane resulted in good
agreement for these derivatives. Therefore, it appears that further
investigation into the effects of the choice of the frequency range to
be used in extracting stability derivatives from frequency-response data
is warranted.
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TABLE I.- DEFINITIONS OF THE COEFFICIENTS OF THE

EQUATIONS OF IATERAL MOTION OF AIRPLANE

Stability-derivative coefficients: Control-effectiveness coefficients:

K - o () L= Ot
= 1
Kp =0z =efV _ By
L o7 F2—C16r2(kXI 2T2
K3 =C'l, S o
B 2@&}{/]321'2 F3==Cn My
2
Ky =Cy |- x- ) 61‘2(]%/1:)21-
P lrr(kx/b) "
G, =C —_———
K5 =I}(2/IX 2 ZBB‘2(kX/b2T2
K6 -c 1 - Ky
oy fig ) 2 G Cnsaz(kZ/b)a -

Kg = Ixz/Iz

M
Kio = CanlL_T@Z_l/—_—b)%
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TABLE IT.- COEFFICIENTS OF TRANSFER FUNCTIONS

The equations for the transfer functions are glven in appendix Aj;

the coefficients Cp are obtained from the coefficients Cj'

C 1
by dividing by Cp' Ga.g., Cy = _.1._)]

€18’

Co

1 - KKg
Ky + Ky + Ko - K5Kg - KgKg - K3K5Kg
K7 + K1Ky + KyKyg + KiKjo - KsKg - KgKg - KyKsKg - KyKgKg
Kekz + Ky - K59 + KnKyKio - KiKekg - Kolsky
Kok - KoKgKy
F (1 - K5Kp)
FiKy + FiKjo - Kgfp - F5 - FiKsKg - FiKeKg
FiKKo - Fpkg + Fakoks - FsKy + FoK, - FiKeKg
F3KKg + FoKioKp
Fo + Fz¥g
FpKy + FiKsKy - FiKs + FaKg + FaKiKs + Fkyg
FpKiKyo + FiKgKy + FaKz + Foky - FiKsKyo + FxKiKg
F3 + KgFp

FsKy + FaKy - FiKsKg + FiKo + FoKg + FKg
FzK1K)y - FiKsKg + FiKuKy + FokyKg

FpoKy + FaiKy
Co'VFy,

Cl'VFl - VKiC5'
VF102' - VK1C6'
VFlCB' - VKiC7'

VF].C)-I-' - VK108'
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TABLE ITI.- ATRPLANE PARAMETERS USED IN EXAMPLE GIVEN IN BODY OF PAPER

(a) Known
M= 0.8 (evaluated for an altitude of 10,000 ft)
b= 22.6 £t
S = 130.0 8q ft
p = 0.001756 slug/cu ft
V= 86L.7T4 ft/sec

Iy = 2062 slug-ft2
Iy = 13,298 slug-ft°
m = g = 295.03 slugs
' Ixy, = 157 slug-ft2
Cny = O
(b) Camputed
T = p—gv- = 1.5 sec
Hp = = = 57.2

_Ixz
K5 = T T 0.07614

Kg = % _ 6.011806
Iz

Ky = % = 0.03T4 per sec
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TABLE IV.- FREQUENCY-RESPONSE DATA FOR EXAMPLE

GIVEN IN BODY OF PAPER

(a) Sideslip, B

@, 5| | %8s, B B
radians B O =|:_— cos <I>,3 BB =’:— sin <I>B
—sec — |5r| deg ki OS¢ °r Sr °r

1 0.536 -0.1 0.536179 -0.001562
2 STh -1.1 574106 -.011025
3 .650 -2.3 .649929 -.026083
4 S197 =1 .T794967 -.056988
5 1.116 8.2 1.104368 -.159106
6 2.105 -20.8 1.967h417 - TH7357
7 4,338 -109.7 -1.462174 -4.08376%
8 1.368 -158.1 -1.268821 -.510100
9 715 -166.1 -.693781 -.171676

10 RIS -169.1 -.155533 -.087720

(b) Roll, ¢

> i | %, g 2
radians _@l &y = cosg =| sin

sheme | || | e 5|7 e el P

1 8.761 79.0 1.676642 8.598903
2 4 624 67. 1.754686 4.278%25
3 3.4%2 57 .4 1.850156 2.891147
! 3.111 7.6 2.096761 2.297575
5 3.459 37. 2.760823 2.084203
6 5.446 18.9 5.153317 1.762687
T 9.719 ~Th. 2.578202 -9.370572
8 2.729 -126.9 -1.638908 -2.181509
9 1.298 -138. -.966715 -.865863
10 .780 -143.9 -.630341 -.459096
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TABLE IV.- FREQUENCY-RESPONSE DATA FOR EXAMPLE

GIVEN IN BODY OF PAPER - Concluded

(c) Yaw, ¥
O‘)J i— Q 2 = —;P:_ = i ¢
radians 5r 221' Aﬂy sr co8 (Dwar B,# lsr sin ‘1’51‘
gec g
1 0.223 163.4 -0.213722 0.06371k
2 ok 1744 -.191634 .048463
3 .613 17h.h -.610140 .059934
4 T3 172.8 - T6TL3h 096775
5 1.096 168.9 -1.075250 .210567
6 2.079 156.2 -1.903129 837405
7 k299 67.3 1.656940 3.966906
8 1.358 18.7 1.285297 136504
9 .710 10.7 .698169 131797
10 JL62 7.1 458498 .057029
(d) Lateral acceleration, ay
5 W co &y
== s & B =|—=|gin &
o, | (Bl | |™ Igl Ve, | Y &l Y
radlans
8ec ft/sec? deg £t/sec2 ft/sec?
= an radian radian
1 107.67 | 179.7 107.67%6 0.564215
2 121.70 | 178.2 121.6356 _ 3.928440
3 149.83 | 176.5 149.5411 9.277399
L 204.00 | 17k.0 202.8943 21..205800
5 322.10 | 169.6 316.7986 58.143795
6 691.42 | 156.5 634.3160 275.150748
7 1628.37 | 67.3 627.9656 1502.418071
8 587.34 | 18.6 556 .6625 187.337711
9 350.66 | 10.4 34l ,9205 63.200245
10 25k .5k 7.2 252.5535 31..756598
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TABLE V.- MODIFIED FORM OF EQUATIONS USED
IH EXAMPLE GIVEN IN BOIX OF PAFER

E;K”ﬁ)ﬂ{‘]} '{J%(ﬂa - ok + Keﬁss)d(ﬂa)}

ﬂl“&(“l“a'%“%’@fbj

BEmI {2 e
)

L Zede[] (30,
2o, [T (B |3 6o,

deoy

nr5-§le%+x8&\¢-xmmnv-cﬂ')d :

J=op

DBl e ma,Ea N, ()0, |

| e, T (4 - ), (), > P

N%éﬁ%+ Faghy - st|?;;{2)a(nanv + W]

—

%6’2% gy - wli&]é)a(% - ey
| B o,

_%@a*%-%@m@r%}dﬁ)d
A hy

%(Ksna“‘h“ﬁ*xﬂ‘hv "’%);(‘mﬁ),;
= [

Kg

KG'

R T TR | o B M N SN CORL N | A S

(27a)

(28a)

(292)

(30a)

(1)

(zes)

(3he)

(352)

(36a)



NACA TN 3083 37

TABLE VI.- LEAST-SQUARES SOLUTION OF EQUATIONS FOR DATA

OF EXAMPLE GIVEN IN BODY OF PAPER

(a) X3, equation (27Ta)

ﬁ(‘ ahg - ohy + KB By = 7.378

a=1

% 2
= . 6
2 (BB) 17.562

17.562K1 = 7.378
K; = 0.420

(b) Ty, equation (28a)
10
%(KlAB —-K2A¢ - aBy - usaq,) = 1.061

10F; = 1.061

F = 0.1061

e e e e s o g = g
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TABLE VI.- LEAST-SQUARES SOLUTION OF EQUATIONS FOR DATA

OF EXAMPLE GIVEN IN BODY OF PAPER - Continued

(¢) Xy from lateral-acceleration data, equation (29a)
0
(— VB@ 2 = 13,042,%2h
a=1l
10

Z(BB_&)(- VBg) = 5,567,902

wm=1

13,042,000K; = 5,568,000

Ky = 0.h27

(d) Fy from lateral-acceleration data, equation (%0a)

iz—T(KlAB + A—zl)= 1.035059

10F; = 1.035
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TABLE VI.- LEAST-SQUARES SOLUTION OF EQUATIONS FOR DATA

OF EXAMPLE GIVEN IN BODY OF PAPER - Continued

(e) Ky and Kj,, equation (3la)
10 2
>_ (- B © = 17.562397
1

=

i(- B@ why = bk 47131

a=1

%(&)Aﬁ,) 2 = 473.928087

w=1
i(we% - K8w2B¢)(— BB> = 856.325838
%(&234, - K8w2B¢)@A¢> = 2356.791416

Kg = 0.011806 Kg =0
17.56&7 + M.lL?KlO = 856.3

lm.le.? + 473.931{10 =23%56.8
Ky = L7 3
Kio = 0.5217

(£) F5, equation (322)

10F5 = {i (- Kohg + K8032A¢ - KjguBy - aﬁAw) = -251.87

=1

F3 = -25.187
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TABLE VI.- LEAST-SQUARES SOLUTION OF EQUATIONS FOR DATA
OF EXAMPLE GIVEN IN BODY OF PAPER - Continued

(g) K5, Ky, and Fp, equation (34a)
10

>_(BgBy + Aghy) ® = 371.762380

w=1
10

%(BBB,{, + ABA‘Q(chg;Bw - a)B¢A,Q = -3617.677695

10
gl(BBB‘” + Aghy) (- Ay)= 25.184790

10

- aBgA,) 2 = 3523L.438878
>_(shgBy - aogh)

%Z‘ (AgBy - aBgA(- Ay = -209.219323

a=1

i(— A.q,>2 = 11.122853

w=1

i(&aﬁ, + ofaghy - @walgﬁ(as% + Aghy) = 33187.734509

=1

g@f"%&y + oPAghy - %wzlglz)@%% - aB¢A4,) = -32234k.219155

i oB of - wﬂiﬁ- = 2422.633922

m:l( gy + Faghy - Ksof KT a) 539
371.76238Kz - 3617.6TT69K) + 23.18479F, = 33187.73451

-3617.677691{3 + 35234.438881{1L - 209.21932F, = -32234L .21915
23.18&791{3 - 209.21932K), + 11.12285F, = 2422.633922

K3 = 138.272 Ky = 5.212 Fp = 27.636
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TABLE VI.- LEAST-SQUARES SOLUTION OF EQUATIONS FOR DATA
OF EXAMPLE GIVEN IN BODY OF PAPER - Concluded

(h) KXg, equation (35a)

i (awa) 2 - 811.55627

a=1

ﬁ(‘“ﬁ@@ + ahg - KoaPay + KyaBg - Kyhg) = 235.117592

a=1

811.6K6 = 235.1
Kg = 0.290

(1) Mlternate means of obtaining Kg, equation (36a)

i(aﬂw) % = 473.928983

o=1
ey g s, - ) 5.7k
473.9K¢ = 137.77
Kg = 0.201
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TABLE VII.- COMPARISON OF COMPUTED AND KNOWN VALUES OF COEFFICIENTS OF

EQUATIONS OF LATERAT, MOTION FOR EXAMPIE GIVEN IN BODY OF PAPER

Coefficient Computed from data Known value

80.42054

Ky bo.u229 0.kaT

K3 138.272145 138.245

Ky 5.212568 5.21

Kg 0.290 0.3017

K7 47.438625 h7.41

Kio 0.521457 0.5272
20.1060

Fq bo.103§ } 0.104

Fo 27.636187 27.65

F3 -25.187091 -25.22

&From sideslip data.
Pprom 1lateral-scceleration data.

TABLE VIII.- COMPARISON OF COMPUTED AND KNOWN STABILITY

DERTVATIVES FOR EXAMPLE GIVEN IN BODY OF PAPER

Stability
derivative Camputed Known
Cyg -1.259 -1.28
Czp -0.4280 -0.428
Cip 0.02389 0.0248
Cng 0.3292 0.329
Cny -0.2732 -0.279
CYer 0.3183 0.312
Clsy 0.02979 0.0298
Cag,, -0.1748 -0.175
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TABLE IX.- COMPARISON OF COMPUTED AND KNOWN COEFFICIENTS OF

TRANSFER FUNCTIONS FOR EXAMPLE GIVEN IN BODY OF PAPER

Computed from data
Coefficient (least-squares value) Known
Co’ 0.999101 0.999101
Cy! 6.150763 6.160254
Co! 50.934260 50.972855
C3' 253.483361 253.2143
Cy' 2.193801L 2.190861
Cs' 0.105995 0.103907
Cg' 25.468778 25.48986
Cr! 132.544801 132.64415
cg!’ 0.267223 0.260611
Co' 25.7184k2 25.729749
Ci0' 3.636361 3.952748
Ciy' -2174.851610 -2178.769199
C1o' -2 .860818 -2l 89356}
C13’ -1%6.884812 -137.264852
Ciy’ -28.978823 -30.417543
C15' -81.654072 -81.36940
Ci6' 89.111765 89.62096
Ci7' 509.187633 514 .350717
C18' -4822,026985 -4815.419162
Cig" -26127.620554 -26138.3245T7
Coo' 97.287337 100.542037

TABLE X.- COMPUTED LATERAT. MODES FOR
EXAMPLE GIVEN IN BODY OF PAPER
Laharacteristic equation is equation (Al6) of appendix A]

Damping-in-roll mode, P T S S S -5.393%
SPIral mode, g o o o o ¢ o 4 o e e e e s e e e e e e e e -0.008668

Dutch roll mode, - T in . & v ¢ v v ¢ v o o v o o o & = 0.381 t 1(6.84)




Altitude, £t .

Wing loading, 1b/sq ft . . . .

V, ft/sec . .
b, £t
C, « « &

p. e ¢ e o o o

CZP per radian

e e

Cy,. per radian
Cn, per radian
Cn; per radian
CYB per radian
CnB
CZB per radian

per radian

CZS& per radian
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TABIE XTT.- COMPARISON BEETWEEN STABILITY DERIVATIVES USED IN CALCULATION OF

TRANSIENTS AND THOSE DERIVED FROM TRANSIENTS FOR EXAMPLE IN APFENDIX B

Translent analysis, cm;re-fit‘ting method

Trenslent analyesis, IBM equipment

Derivative |Aspumed value| From eqs. of From eqs. of From eqs. of From eqs. of
present paper | motion as vector eqs. |present paper|motion as vector egs.
i ,
Cy. 0,080 0.0882 0.110 0.130 0.099
CZB ~0.126 ~0.127 -0.134 -0.129 -0.128
Czaa -0.100 -0.100 -0,100 -0.068 -0.099
Cnp ~0.020 ~0.020 -0.021 -0.029 -0.025
Cn, -0.400 -0.382 -0.397 -0.786 -0.646
an 0.250 0.253 0.257 0.213 0.258
CYB ~1.000 -1.050 -1.003% ~0.600 1.260

Q0% NI VOWVN
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Wind direction Y

Figure l.- Stability axis system showing positive directions.
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Imaginary axis

Real axis

(a) Vector diagrem showing relative magnitudes and positions of input 5y
and output B, and thelr derivatives. = 0.7 radian/sec.

Figure 2.~ Vector representation of lateral variables.
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(b) Vector diagram showing relative msgnitudes and positions of
input B, and response vectors B, @, and V.

Flgure 2.~ Concluded.
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Figure 4.- Frequency response in roll due to rudder-deflection inmput
for rigld, high-speed airplane of example given in body of paper.
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Figure 5.- Frequency response,.in yaw due to rudder-deflection input for
rigid, high-speed alrplane of example given in body of paper.
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Figure 6.- Frequency response in lateral acceleration due to rudder-
deflection input for rigid, high-speed airplene of example gilven

in bedy of paper.
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(e) Rolling velocity.

Figure 7.~ Calculation of transient responses to a square-pulse eilleron
deflection fcr the sirplane defined in table XTI,
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——— C(alculated from mass and aerodynemic
\ characteristics of airplane
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. %& Trgt%stifo%t analysis, curve-fitting
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(At = 0.05 sec)
., \
e
3
g 3 [ \
R
E‘ .2

0 1 2 3 L 5 6 T 8 9 10
®, radiens/sec :

() Amplitude ratio |1E|
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Figure 8.- Frequency responses due to alleron-deflection input for the
girplane described in table XI.
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Figure 8.~ Continued.
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Figure 8.- Continued.
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Figure 8.- Continued.
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